
 

 

UNIT-V 

Monte Carlo Methods:  Monte Carlo Prediction, Monte Carlo 

Estimation of Action Values, Monte Carlo Control, Monte Carlo 

Control without Exploring Starts, Off-policy Prediction via 

Importance Sampling, Incremental Implementation, Off-Policy Monte 

Carlo Control, Importance Sampling on Truncated Returns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1. Monte Carlo Prediction 

➢ We begin by considering Monte Carlo methods for learning the state-value function 

for a given policy.  

➢ Recall that the value of a state is the expected return—expected cumulative future 

discounted reward—starting from that state.  

➢ An obvious way to estimate it from experience, then, is simply to average the returns 

observed after visits to that state.  

➢ As more returns are observed, the average should converge to the expected value.  

➢ This idea underlies all Monte Carlo methods. 

➢ In particular, suppose we wish to estimate vπ(s), the value of a state s under policy π, 

given a set of episodes obtained by following π and passing through s.  

➢ Each occurrence of state s in an episode is called a visit to s. Of course, s may be 

visited multiple times in the same episode; let us call the first time it is visited in an 

episode the first visit to s.  

➢ The first-visit MC method estimates vπ(s) as the average of the returns following first 

visits to s, whereas the every-visit MC method averages the returns following all visits 

to s.  

➢ These two Monte Carlo (MC) methods are very similar but have slightly different 

theoretical properties.  

➢ First-visit MC has been most widely studied, dating back to the 1940s, and is the one 

we focus on in this chapter.  

➢ First-visit MC is shown in procedural form in Figure 5.1. 

 



 

 

➢ Both first-visit MC and every-visit MC converge to vπ(s) as the number of visits (or 

first visits) to s goes to infinity.  

➢ This is easy to see for the case of first-visit MC. In this case each return is an 

independent, identically distributed estimate of vπ(s) with finite variance. 

➢ By the law of large numbers, the sequence of averages of these estimates converges to 

their expected value.  

➢ Each average is itself an unbiased estimate, and the standard deviation of its error falls 

as 1/ √ n, where n is the number of returns averaged.  

➢ Every-visit MC is less straightforward, but its estimates also converge asymptotically 

to vπ(s) (Singh and Sutton, 1996). 

➢ The use of Monte Carlo methods is best illustrated through an example. 

Example 5.1: Blackjack The object of the popular casino card game of blackjack is to obtain 

cards the sum of whose numerical values is as great as possible without exceeding 21. All 

face cards count as 10, and an ace can count either as 1 or as 11. We consider the version in 

which each player competes independently against the dealer. The game begins with two 

cards dealt to both dealer and player. One of the dealer’s cards is face up and the other is face 

down. If the player has 21 immediately (an ace and a 10-card), it is called a natural. He then 

wins unless the dealer also has a natural, in which case the game is a draw. If the player does 

not have a natural, then he can request additional cards, one by one (hits), until he either stops 

(sticks) or exceeds 21 (goes bust). If he goes bust, he loses; if he sticks, then it becomes the 

dealer’s turn. The dealer hits or sticks according to a fixed strategy without choice: he sticks 

on any sum of 17 or greater, and hits otherwise. If the dealer goes bust, then the player wins; 

otherwise, the outcome—win, lose, or draw—is determined by whose final sum is closer to 

21 

 



 

 

 

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of blackjack is an 

episode. Rewards of +1, −1, and 0 are given for winning, losing, and drawing, respectively. All 

rewards within a game are zero, and we do not discount (γ = 1); therefore these terminal rewards are 

also the returns. The player’s actions are to hit or to stick. The states depend on the player’s cards and 

the dealer’s showing card. We assume that cards are dealt from an infinite deck (i.e., with 

replacement) so that there is no advantage to keeping track of the cards already dealt. If the player 

holds an ace that he could count as 11 without going bust, then the ace is said to be usable. In this case 

it is always counted as 11 because counting it as 1 would make the sum 11 or less, in which case there 

is no decision to be made because, obviously, the player should always hit. Thus, the player makes 

decisions on the basis of three variables: his current sum (12–21), the dealer’s one showing card (ace–

10), and whether or not he holds a usable ace. This makes for a total of 200 states. Consider the policy 

that sticks if the player’s sum is 20 or 21, and otherwise hits. To find the state-value function for this 

policy by a Monte Carlo approach, one simulates many blackjack games using the policy and 

averages the returns following each state. Note that in this task the same state never recurs within one 

episode, so there is no difference between first-visit and every-visit MC methods. In this way, we 

obtained the estimates of the statevalue function shown in Figure 5.2. The estimates for states with a 

usable ace are less certain and less regular because these states are less common. In any event, after 

500,000 games the value function is very well approximated. 

Although we have complete knowledge of the environment in this task, it would not be easy to apply 

DP methods to compute the value function. DP methods require the distribution of next events—in 

particular, they require the quantities p(s 0 , r|s, a)—and it is not easy to determine these for blackjack. 

For example, suppose the player’s sum is 14 and he chooses to stick. What is his expected reward as a 

function of the dealer’s showing card? All of these expected rewards and transition probabilities must 

be computed before DP can be applied, and such computations are often complex and error-prone. In 

contrast, generating the sample games required by Monte Carlo methods is easy. This is the case 

surprisingly often; the ability of Monte Carlo methods to work with sample episodes alone can be a 

significant advantage even when one has complete knowledge of the environment’s dynamics. 



 

 

➢ An important fact about Monte Carlo methods is that the estimates for each state are 

independent.  

➢ The estimate for one state does not build upon the estimate of any other state, as is the 

case in DP.  

➢ In other words, Monte Carlo methods do not bootstrap as we defined it in the previous 

chapter.  

➢ In particular, note that the computational expense of estimating the value of a single 

state is independent of the number of states.  

➢ This can make Monte Carlo methods particularly attractive when one requires the 

value of only one or a subset of states.  

➢ One can generate many sample episodes starting from the states of interest, averaging 

returns from only these states ignoring all others.  

➢ This is a third advantage Monte Carlo methods can have over DP methods (after the 

ability to learn from actual experience and from simulated experience). 

 

 

Example 5.2: Soap Bubble Suppose a wire frame forming a closed loop is dunked in soapy 

water to form a soap surface or bubble conforming at its edges to the wire frame. If the 

geometry of the wire frame is irregular but known, how can you compute the shape of the 

surface? The shape has the property that the total force on each point exerted by neighboring 

points is zero (or else the shape would change). This means that the surface’s height at any 

point is the average of its heights at points in a small circle around that point. In addition, the 

surface must meet at its boundaries with the wire frame. The usual approach to problems of 

this kind is to put a grid over the area covered by the surface and solve for its height at the 

grid points by an iterative computation. Grid points at the boundary are forced to the wire 



 

 

frame, and all others are adjusted toward the average of the heights of their four nearest 

neighbours. This process then iterates, much like DP’s iterative policy evaluati 

 

 

This is similar to the kind of problem for which Monte Carlo methods were originally 

designed. Instead of the iterative computation described above, imagine standing on the 

surface and taking a random walk, stepping randomly from grid point to neighbouring grid 

point, with equal probability, until you reach the boundary. It turns out that the expected 

value of the height at the boundary is a close approximation to the height of the desired 

surface at the starting point (in fact, it is exactly the value computed by the iterative method 

described above). Thus, one can closely approximate the height of the surface at a point by 

simply averaging the boundary heights of many walks started at the point. If one is interested 

in only the value at one point, or any fixed small set of points, then this Monte Carlo method 

can be far more efficient than the iterative method based on local consistency. 

 

2. Monte Carlo Estimation of Action Values 

➢ If a model is not available, then it is particularly useful to estimate action values (the 

values of state–action pairs) rather than state values.  

➢ With a model, state values alone are sufficient to determine a policy; one simply looks 

ahead one step and chooses whichever action leads to the best combination of reward 

and next state, as we did in the chapter on DP.  

➢ Without a model, however, state values alone are not sufficient.  

➢ One must explicitly estimate the value of each action in order for the values to be 

useful in suggesting a policy.  

➢ Thus, one of our primary goals for Monte Carlo methods is to estimate q∗.  

➢ To achieve this, we first consider the policy evaluation problem for action values. 

➢ The policy evaluation problem for action values is to estimate qπ(s, a), the expected 

return when starting in state s, taking action a, and thereafter following policy π.  



 

 

➢ The Monte Carlo methods for this are essentially the same as just presented for state 

values, except now we talk about visits to a state– action pair rather than to a state.  

➢ A state–action pair s, a is said to be visited in an episode if ever the state s is visited 

and action a is taken in it.  

➢ The every visit MC method estimates the value of a state–action pair as the average of 

the returns that have followed visits all the visits to it.  

➢ The first-visit MC method averages the returns following the first time in each 

episode that the state was visited and the action was selected.  

➢ These methods converge quadratically, as before, to the true expected values as the 

number of visits to each state–action pair approaches infinity. 

➢ The only complication is that many state–action pairs may never be visited. 

➢ If π is a deterministic policy, then in following π one will observe returns only for one 

of the actions from each state.  

➢ With no returns to average, the Monte Carlo estimates of the other actions will not 

improve with experience.  

➢ This is a serious problem because the purpose of learning action values is to help in 

choosing among the actions available in each state.  

➢ To compare alternatives, we need to estimate the value of all the actions from each 

state, not just the one we currently favour. 

➢ For policy evaluation to work for action values, we must assure continual exploration.  

➢ One way to do this is by specifying that the episodes start in a state–action pair, and 

that every pair has a nonzero probability of being selected as the start.  

➢ This guarantees that all state–action pairs will be visited an infinite number of times in 

the limit of an infinite number of episodes.  

➢ We call this the assumption of exploring starts. 

➢ The assumption of exploring starts is sometimes useful, but of course it cannot be 

relied upon in general, particularly when learning directly from actual interaction with 

an environment.  

➢ In that case the starting conditions are unlikely to be so helpful.  

➢ The most common alternative approach to assuring that all state–action pairs are 

encountered is to consider only policies that are stochastic with a nonzero probability 

of selecting all actions in each state.  

➢ We discuss two important variants of this approach in later sections. 

➢ For now, we retain the assumption of exploring starts and complete the presentation 

of a full Monte Carlo control method. 

3. Monte Carlo Control 

➢ We are now ready to consider how Monte Carlo estimation can be used in control, 

that is, to approximate optimal policies.  

➢ In GPI one maintains both an approximate policy and an approximate value function.  

➢ The value function is repeatedly altered to more closely approximate the value 

function for the current policy, and the policy is repeatedly improved with respect to 

the current value function: 



 

 

 

 

➢ These two kinds of changes work against each other to some extent, as each creates a 

moving target for the other, but together they cause both policy and value function to 

approach optimality. 

➢ To begin, let us consider a Monte Carlo version of classical policy iteration. In this 

method, we perform alternating complete steps of policy evaluation and policy 

improvement, beginning with an arbitrary policy π0 and ending with the optimal 

policy and optimal action-value function: 

 

➢ where  denotes a complete policy evaluation and denotes a complete 

policy improvement.  

➢ Policy evaluation is done exactly as described in the preceding section.  

➢ Many episodes are experienced, with the approximate actionvalue function 

approaching the true function asymptotically.  

➢ For the moment, let us assume that we do indeed observe an infinite number of 

episodes and that, in addition, the episodes are generated with exploring starts.  

➢ Under these assumptions, the Monte Carlo methods will compute each qπk exactly, 

for arbitrary πk. Policy improvement is done by making the policy greedy with 

respect to the current value function.  

➢ In this case we have an action-value function, and therefore no model is needed to 

construct the greedy policy. 

➢ For any action-value function q, the corresponding greedy policy is the one that, for 

each s ∈ S, deterministically chooses an action with maximal action-value: 

 



 

 

 

➢ The theorem assures us that each πk+1 is uniformly better than πk, or just as good as 

πk, in which case they are both optimal policies.  

➢ This in turn assures us that the overall process converges to the optimal policy and 

optimal value function.  

➢ In this way Monte Carlo methods can be used to find optimal policies given only 

sample episodes and no other knowledge of the environment’s dynamics. 

➢ We made two unlikely assumptions above in order to easily obtain this guarantee of 

convergence for the Monte Carlo method.  

➢ One was that the episodes have exploring starts, and the other was that policy 

evaluation could be done with an infinite number of episodes.  

➢ To obtain a practical algorithm we will have to remove both assumptions.  

➢ For now, we focus on the assumption that policy evaluation operates on an infinite 

number of episodes.  

➢ This assumption is relatively easy to remove.  

➢ In fact, the same issue arises even in classical DP methods such as iterative policy 

evaluation, which also converge only asymptotically to the true value function.  

➢ In both DP and Monte Carlo cases there are two ways to solve the problem.  

➢ One is to hold firm to the idea of approximating qπk in each policy evaluation. 

Measurements and assumptions are made to obtain bounds on the magnitude and 

probability of error in the estimates, and then sufficient steps are taken during each 

policy evaluation to assure that these bounds are sufficiently small.  

This approach can probably be made completely satisfactory in the sense of guaranteeing 

correct convergence up to some level of approximation. 

 However, it is also likely to require far too many episodes to be useful in practice on any but 

the smallest problems. 

The second approach to avoiding the infinite number of episodes nominally required for 

policy evaluation is to forgo trying to complete policy evaluation before returning to policy 

improvement.  



 

 

➢ On each evaluation step we move the value function toward qπk , but we do not 

expect to actually get close except over many steps.  

➢ One extreme form of the idea is value iteration, in which only one iteration of iterative 

policy evaluation is performed between each step of policy improvement. 

➢ The in-place version of value iteration is even more extreme; there we alternate 

between improvement and evaluation steps for single states. 

➢ For Monte Carlo policy evaluation it is natural to alternate between evaluation and 

improvement on an episode-by-episode basis.  

➢ After each episode, the observed returns are used for policy evaluation, and then the 

policy is improved at all the states visited in the episode.  

➢ A complete simple algorithm along these lines is given in Figure 5.4. We call this 

algorithm Monte Carlo ES, for Monte Carlo with Exploring Starts. 

➢ In Monte Carlo ES, all the returns for each state–action pair are accumulated and 

averaged, irrespective of what policy was in force when they were observed.  

➢ It is easy to see that Monte Carlo ES cannot converge to any suboptimal policy. 

➢ If it did, then the value function would eventually converge to the value function for 

that policy, and that in turn would cause the policy to change.  

➢ Stability is achieved only when both the policy and the value function are optimal. 

Convergence to this optimal fixed point seems inevitable as the changes to the action-

value function decrease over time, but has not yet been formally proved.  

➢ In our opinion, this is one of the most fundamental open theoretical questions in 

reinforcement learning (for a partial solution, see Tsitsiklis, 2002). 

 

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to blackjack. 

Since the episodes are all simulated games, it is easy to arrange for exploring starts that 

include all possibilities. In this case one simply picks the dealer’s cards, the player’s sum, and 



 

 

whether or not the player has a usable ace, all at random with equal probability. As the initial 

policy we use the policy evaluated in the previous blackjack example, that which sticks only 

on 20 or 21. The initial action-value function can be zero for all state–action pairs. Figure 5.5 

shows the optimal policy for blackjack found by Monte Carlo ES. This policy is the same as 

the “basic” strategy of Thorp (1966) with the sole exception of the leftmost notch in the 

policy for a usable ace, which is not present in Thorp’s strategy. We are uncertain of the 

reason for this discrepancy, but confident that what is shown here is indeed the optimal policy 

for the version of blackjack we have described. 

 

 

 

4. Monte Carlo Control without Exploring Starts 

➢ How can we avoid the unlikely assumption of exploring starts? The only general way 

to ensure that all actions are selected infinitely often is for the agent to continue to 

select them. There are two approaches to ensuring this, resulting in what we call on-

policy methods and off-policy methods.  

➢ On policy methods attempt to evaluate or improve the policy that is used to make 

decisions, whereas off-policy methods evaluate or improve a policy different from 

that used to generate the data.  

➢ The Monte Carlo ES method developed above is an example of an on-policy method. 



 

 

➢ In on-policy control methods the policy is generally soft, meaning that π(a|s) > 0 for 

all s ∈ S and all a ∈ A(s), but gradually shifted closer and closer to a deterministic 

optimal policy.  

➢ The on-policy method we present in this section uses ε-greedy policies, meaning that 

most of the time they choose an action that has maximal estimated action value, but 

with probability ε. 

➢ they instead select an action at random. That is, all nongreedy actions are given the 

minimal probability of selection, , and the remaining bulk of the probability, 

, is given to the greedy action.  

➢ The ε-greedy policies are examples of ε-soft policies, defined as policies for which 

π(a|s) ≥ |A(s)| for all states and actions, for some ε > 0. Among ε-soft policies, ε-

greedy policies are in some sense those that are closest to greedy. 

➢ The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte 

Carlo ES, we use first-visit MC methods to estimate the action-value function for the 

current policy. Without the assumption of exploring starts, however, we cannot 

simply improve the policy by making it greedy with respect to the current value 

function, because that would prevent further exploration of nongreedy actions.  

➢ Fortunately, GPI does not require that the policy be taken all the way to a greedy 

policy, only that it be moved toward a greedy policy.  

➢ In our on-policy method we will move it only to an ε-greedy policy.  

➢ For any ε-soft policy, π, any ε-greedy policy with respect to qπ is guaranteed to be 

better than or equal to π. 



 

 

 

➢ Consider a new environment that is just like the original environment, except with the 

requirement that policies be ε-soft “moved inside” the environment.  

➢ The new environment has the same action and state set as the original and behaves as 

follows.  

➢ If in state s and taking action a, then with probability 1 − ε the new environment 

behaves exactly like the old environment.  

➢ With probability ε it repicks the action at random, with equal probabilities, and then 

behaves like the old environment with the new, random action. 

➢ The best one can do in this new environment with general policies is the same as the 

best one could do in the original environment with ε-soft policies.  

➢ Let ve∗ and qe∗ denote the optimal value functions for the new environment. Then a 

policy π is optimal among ε-soft policies if and only if vπ = ve∗. 

➢ From the definition of ve∗ we know that it is the unique solution to 



 

 

 

➢ In essence, we have shown in the last few pages that policy iteration works for ε-soft 

policies. Using the natural notion of greedy policy for ε-soft policies, one is assured of 

improvement on every step, except when the best policy has been found among the ε-

soft policies.  

➢ This analysis is independent of how the action-value functions are determined at each 

stage, but it does assume that they are computed exactly.  

➢ This brings us to roughly the same point as in the previous section. 

➢ Now we only achieve the best policy among the ε-soft policies, but on the other hand, 

we have eliminated the assumption of exploring starts. The complete algorithm is 

given in Figure 5.6. 



 

 

 

 

5. Off-policy Prediction via Importance Sampling 

➢ So far we have considered methods for estimating the value functions for a policy 

given an infinite supply of episodes generated using that policy.  

➢ Suppose now that all we have are episodes generated from a different policy.  

➢ That is, suppose we wish to estimate vπ or qπ, but all we have are episodes following 

another policy µ, where µ 6= π.  

➢ We call π the target policy because learning its value function is the target of the 

learning process, and we call µ the behavior policy because it is the policy controlling 

the agent and generating behavior.  

➢ The overall problem is called off-policy learning because it is learning about a policy 

given only experience “off” (not following) that policy.  

➢ In order to use episodes from µ to estimate values for π, we must require that every 

action taken under π is also taken, at least occasionally, under µ.  

➢ That is, we require that π(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of 

coverage.  

➢ It follows from coverage that µ must be stochastic in states where it is not identical to 

π.  

➢ The target policy π, on the other hand, may be deterministic, and, in fact, this is a case 

of particular interest.  

➢ Typically the target policy is the deterministic greedy policy with respect to the 

current action-value function estimate.  



 

 

➢ This policy we hope becomes a deterministic optimal policy while the behavior policy 

remains stochastic and more exploratory, for example, an ε-greedy policy. 

➢ Importance sampling is a general technique for estimating expected values under one 

distribution given samples from another.  

➢ We apply this technique to off-policy learning by weighting returns according to the 

relative probability of their trajectories occurring under the target and behavior 

policies, called the importance-sampling ratio.  

➢ Given a starting state St , the probability of the subsequent state–action trajectory, At , 

St+1, At+1, . . . , ST , occurring under any policy π is 

 

➢ Note that although the trajectory probabilities depend on the MDP’s transition 

probabilities, which are generally unknown, all the transition probabilities cancel and 

drop out.  

➢ The importance sampling ratio ends up depending only on the two policies and not at 

all on the MDP. 

➢ Now we are ready to give a Monte Carto algorithm that uses a batch of observed 

episodes following policy µ to estimate vπ(s).  

➢ It is convenient here to number time steps in a way that increases across episode 

boundaries. That is, if the first episode of the batch ends in a terminal state at time 

100, then the next episode begins at time t = 101.  

➢ This enables us to use time-step numbers to refer to particular steps in particular 

episodes.  

➢ In particular, we can define the set of all time steps in which state s is visited, denoted 

T(s). This is for an every-visit method; for a first-visit method, T(s) would only 

include time steps that were first visits to s within their episode.  

➢ Also, let T(t) denote the first time of termination following time t, and Gt denote the 

return after t up through T(t). Then {Gt}t∈T(s) are the returns that pertain to state s, 

and {ρ T(t) t }t∈T(s) are the corresponding importance-sampling ratios. To estimate 

vπ(s), we simply scale the returns by the ratios and average the results: 



 

 

 

➢ When importance sampling is done as a simple average in this way it is called 

ordinary importance sampling 

 

➢ or zero if the denominator is zero.  

➢ To understand these two varieties of importance sampling, consider their estimates 

after observing a single return.  

➢ In the weighted-average estimate, the ratio ρ T(t) t for the single return cancels in the 

numerator and denominator, so that the estimate is equal to the observed return 

independent of the ratio (assuming the ratio is nonzero).  

➢ Given that this return was the only one observed, this is a reasonable estimate, but of 

course its expectation is vµ(s) rather than vπ(s), and in this statistical sense it is 

biased.  

➢ In contrast, the simple average (5.4) is always vπ(s) in expectation (it is unbiased), but 

it can be extreme. 

➢ Suppose the ratio were ten, indicating that the trajectory observed is ten times as 

likely under the target policy as under the behaviour policy. In this case the ordinary 

importance-sampling estimate would been times the observed return.  

➢ That is, it would be quite far from the observed return even though the episode’s 

trajectory is considered very representative of the target policy. 

➢ Formally, the difference between the two kinds of importance sampling is expressed 

in their variances.  

➢ The variance of the ordinary importance sampling estimator is in general unbounded 

because the variance of the ratios is unbounded, whereas in the weighted estimator the 

largest weight on any single return is one.  

➢ In fact, assuming bounded returns, the variance of the weighted importance-sampling 

estimator converges to zero even if the variance of the ratios themselves is infinite 

(Precup, Sutton, and Dasgupta 2001).  

➢ In practice, the weighted estimator usually has dramatically lower variance and is 

strongly preferred.  

Example 5.4: Off-policy Estimation of a Blackjack State Value We applied both ordinary 

and weighted importance-sampling methods to estimate the value of a single blackjack state 



 

 

from off-policy data. Recall that one of the advantages of Monte Carlo methods is that they 

can be used to evaluate a single state without forming estimates for any other states. In this 

example, we evaluated the state in which the dealer is showing a deuce, the sum of the 

player’s cards is 13, and the player has a usable ace (that is, the player holds an ace and a 

deuce, or equivalently three aces). The data was generated by starting in this state then 

choosing to hit or stick at random with equal probability (the behaviour policy). The target 

policy was to stick only on a sum of 20 or 21, as in Example 5.1. The value of this state under 

the target policy is approximately −0.27726 (this was determined by separately generating 

one-hundred million episodes using the target policy and averaging their returns). Both off-

policy methods closely approximated this value after 1000 off-policy episodes using the 

random policy. Figure 5.7 shows the mean squared error (estimated from 100 independent 

runs) for each method as a function of number of episodes. The weighted importance-

sampling method has much lower overall error in this example, as is typical in practice. 

 



 

 

 

Example 5.5: Infinite Variance The estimates of ordinary importance sampling will typically 

have infinite variance, and thus unsatisfactory convergence properties, whenever the scaled 

returns have infinite variance—and this can easily happen in off-policy learning when 

trajectories contain loops. A simple example is shown inset in Figure 5.8. There is only one 

nonterminal state s and two actions, end and back. The end action causes a deterministic 

transition to termination, whereas the back action transitions, with probability 0.9, back to s 

or, with probability 0.1, on to termination. The rewards are +1 on the latter transition and 

otherwise zero. Consider the target policy that always selects back. All episodes under this 

policy consist of some number (possibly zero) of transitions back to s followed by 

termination with a reward and return of +1. Thus the value of s under the target policy is thus 

1. Suppose we are estimating this value from off-policy data using the behaviour policy that 

selects end and back with equal probability. The lower part of Figure 5.8 shows ten 

independent runs of the first-visit MC algorithm using ordinary importance sampling. Even 

after millions of episodes, the estimates fail to converge to the correct value of 1. In contrast, 

the weighted importance-sampling algorithm would give an estimate of exactly 1 ever after 

the first episode that was consistent with the target policy (i.e., that ended with the back 

action). This is clear because that algorithm produces a weighted average of the returns 

consistent with the target policy, all of which would be exactly 1. 



 

 

 

➢ To compute this expectation, we break it down into cases based on episode length and 

termination.  

➢ First note that, for any episode ending with the end action, the importance sampling 

ratio is zero, because the target policy would never take this action; these episodes 

thus contribute nothing to the expectation (the quantity in parenthesis will be zero) 

and can be ignored.  

➢ We need only consider episodes that involve some number (possibly zero) of back 

actions that transition back to the nonterminal state, followed by a back action 

transitioning to termination.  

➢ All of these episodes have a return of 1, so the G0 factor can be ignored.  

➢ To get the expected square we need only consider each length of episode, multiplying 

the probability of the episode’s occurrence by the square of its importance-sampling 

ratio, and add these up: 

 



 

 

6. Incremental Implementation 

➢ Monte Carlo prediction methods can be implemented incrementally, on an episode-

by-episode basis, using extensions of the techniques.  

➢ For off-policy Monte Carlo methods, we need to separately consider those that use 

ordinary importance sampling and those that use weighted importance sampling. 

➢ In ordinary importance sampling, the returns are scaled by the importance sampling 

ratio ρ T(t) t (5.3), then simply averaged. 

➢ This leaves the case of off-policy methods using weighted importance sampling. 

➢ Here we have to form a weighted average of the returns, and a slightly different 

incremental algorithm is required. 

 

 
 

 

➢ where C0 = 0 (and V1 is arbitrary and thus need not be specified). Figure 5.9 

gives a complete episode-by-episode incremental algorithm for Monte Carlo 

policy evaluation.  

➢ The algorithm is nominally for the off-policy case, using weighted importance 

sampling, but applies as well to the on-policy case just by choosing the target 

and behaviour policies as the same. 



 

 

 
 

7. Off-Policy Monte Carlo Control 

 
➢ We are now ready to present an example of the second class of learning 

control methods we consider in this book: off-policy methods. 

➢ Recall that the distinguishing feature of on-policy methods is that they 

estimate the value of a policy while using it for control.  

➢ In off-policy methods these two functions are separated.  

➢ The policy used to generate behaviour, called the behaviour policy, may in 

fact be unrelated to the policy that is evaluated and improved, called the target 

policy. 

➢ An advantage of this separation is that the target policy may be deterministic 

(e.g., greedy), while the behaviour policy can continue to sample all possible 

actions. 

➢ They follow the behavior policy while learning about and improving the target 

policy. These techniques requires that the behavior policy has a nonzero 

probability of selecting all actions that might be selected by the target policy 

(coverage). 



 

 

➢ To explore all possibilities, we require that the behavior policy be soft (i.e., 

that it select all actions in all states with nonzero probability). 

➢ Figure 5.10 shows an off-policy Monte Carlo method, based on GPI and 

weighted importance sampling, for estimating q∗.  

➢ The target policy π is the greedy policy with respect to Q, which is an estimate 

of qπ. The behaviour policy µ can be anything, but in order to assure 

convergence of π to the optimal policy, an infinite number of returns must be 

obtained for each pair of state and action.  

➢ This can be assured by choosing µ to be ε-soft. 

➢ A potential problem is that this method learns only from the tails of episodes, 

after the last nongreedy action.  

➢ If nongreedy actions are frequent, then learning will be slow, particularly for 

states appearing in the early portions of long episodes.  

➢ Potentially, this could greatly slow learning.  

➢ There has been insufficient experience with off-policy Monte Carlo methods 

to assess how serious this problem is.  

➢ Alternatively, if γ is less than 1, then the idea developed in the next section 

may also help significantly. 

 
 

 

 

 



 

 

 

 

 

 

8. Importance Sampling on Truncated Returns. 

 

 



 

 

 




